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Abstract. Learning classifiers from imbalanced and concept drifting
data streams is still a challenge. Most of the current proposals focus
on taking into account changes in the global imbalance ratio only and
ignore the local difficulty factors, such as the minority class decompo-
sition into sub-concepts and the presence of unsafe types of examples
(borderline or rare ones). As the above factors present in the stream
may deteriorate the performance of popular online classifiers, we pro-
pose extensions of resampling online bagging, namely Neighbourhood
Undersampling or Oversampling Online Bagging to take better account
of the presence of unsafe minority examples. The performed computa-
tional experiments with synthetic complex imbalanced data streams have
shown their advantage over earlier variants of online bagging resampling
ensembles.

Keywords: data streams - class imbalance - data complexity - online
bagging

1 Introduction

Although learning classifiers from concept drifting data streams has been in-
tensively studied in the last decades it is still the subject of many new studies,
including better consideration of various types of concept drifts or other data
complexity [3I7]. This applies in particular to class imbalances in the stream,
which also occur in some practical applications [16].

However, the current research on imbalanced and concept drifting streams
is still not as developed as in the case of separately considered static data or
streams. Moreover, the existing works mostly focus on re-balancing classes and
reacting to changes caused by the varying global imbalance ratio. These works
do not sufficiently consider more complex imbalanced stream scenarios, where
these changes are additionally accompanied by the local difficulty factors already
considered for the static imbalanced data such as the minority class split into
sub-concepts, class overlapping, or occurrence of different types of unsafe minor-
ity examples (borderline, rare or outliers [II]). In evolving data streams these
factors could also influence the changes in local class distributions and lead to
distinguishing new types of local drifts in the stream [3//4].
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Up to now, only two experimental studies have been conducted on the role of
these local difficulty factors combined with other types of concept drifts [3/10].
The authors of [3] carried out a large series of comprehensive experiments with
synthetic and real data streams showing the different influence of types of mi-
nority examples and class decomposition on predictions of representative on-
line classifiers. They showed that especially re-sampling generalizations of online
bagging coped sufficiently well with changes in the global class imbalance ra-
tio in the stream and partially with the split of the minority class into smaller
sub-concepts. However, drift associated with the greater presence of unsafe ex-
amples (especially rare examples) caused a deterioration in the performance of
all tested online classifiers. Furthermore, combinations of multiple factors were
demonstrated to be the most challenging for all classifiers, which were not able to
recover from these drifts [3]. The experiments of [3] concerned binary imbalanced
classes, however later their main observations were confirmed also for multiple
classes in [10].

Therefore, the aim of this work is to propose new generalizations of under-
sampling or over-sampling online bagging ensembles that would better handle
the drifts of unsafe types of examples in such complex imbalanced data streams.
The other aim is to evaluate them experimentally on multiple synthetic data
and compare them with earlier versions of online re-sampling baggings.

2 Related Works

Due to the page limits the reader is referred to works such as [9] for a review
of research on data streams or to [26J8] for imbalanced data. In the case of
imbalanced and concept-drifting data streams, refer to [1I3/4].

In the case of static imbalanced data, it has been already shown that besides
the global imbalance between classes other sources of classifier deterioration
include: (1) the decomposition of the minority class into several sub-concepts,
(2) the presence of small, isolated groups of minority examples located deeply
inside the majority class region (it corresponds to rare cases), (3) the effect of
strong overlapping between the classes.

The last two factors can be identified through, the so-called, types of examples
[11], which distinguish between safe and unsafe examples. Safe examples are the
ones located in homogeneous regions populated by examples from one class only.
The unsafe examples are categorized into borderline (placed close to the decision
boundary between classes), rare cases (isolated groups of few examples located
deeper inside the opposite class), and outliers - singletons. See Figure [l for
their illustration. Following the method from [I1] these types of examples can
be identified based on the analysis of class labels of other examples in the local
neighbourhood of the given instance. Most studies on imbalanced data streams
focus on handling either static or drifting imbalance ratios only and they do not
consider the aforementioned data factors.

The authors of [3] introduced an extended concept drift categorization from
imbalanced streams that takes into account these local data factors and covers
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(a) Safe minority
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(d) Rare cases and
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Fig. 1. An illustration of different difficulty factors in imbalanced data - based on [4]

specific types of drifts inside them. These authors prepared a special generator
of the synthetic data streams, where various scenarios of the occurrence of these
elements are modeled - see its description in an electronic appendix of [3].

It was observed in [3] that specialized imbalanced stream classifiers (ie. two
re-sampling versions of online bagging, i.e. over-sampling the minority class OOB
or under-sampling the majority class UOB [14], and a specialized neural network
ESOS-ELM) coped well with nearly all static and dynamically changing imbal-
ance ratios. Non-specialized online classifiers (such as OB and VFDT) performed
much worse, especially when the minority class ratio dropped to 1-5%. The rest
of the experiments demonstrated that the imbalance ratio can play an impor-
tant (amplifying) role only when combined with other factors. Then, the other
aspects of drift locality and minority class composition affected all the analyzed
classifiers. All classifiers suffered moderate performance drops when exposed to
moving sub-clusters and even more substantial performance drops and limited
recovery when exposed to minority class splits. However, the next experiments
demonstrated that changes in the distribution of types of minority examples from
safe to unsafe ones (i.e. borderline or rare) were very influential, in particular for
introducing more rare examples as a result of the drift. Drifting proportions of
rare examples were the only drift the best classifiers did not recover from in any
way. Furthermore, the effects of all the analyzed difficulty factors are amplified
when they occur together as combined multiple drifts.

These observations for binary imbalanced classes were confirmed in a similar
study for multi-class data [I0], which also showed a greater impact of the presence
of borderline examples.

3 Neighbourhood Online Bagging

In our work, we decided to extend under or over-sampling ensemble approaches
based on online bagging (originally proposed in [14]) because they performed
best in experiments with difficult imbalanced data streams [3I10].

Online bagging [12], in contrast to the static Breiman’s bagging ensemble,
is capable of dealing with online environments because it processes each exam-
ple only once upon arrival. The idea of online bagging is based on exploiting the
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Poisson distribution and its parameter A to estimate how many times the current
incoming example should be sent to each component classifier (a default A = 1,
which works well for approximately balanced classes in the stream). Each classi-
fier can incrementally update (trained) with such received examples depending
on this estimate.

Oversampling-based Online Bagging (OOB) and Undersampling-based Online
Bagging (UOB) are generalizations proposed in [I3l14] to change the presence
of examples from the particular class in this Poisson distribution operation con-
cerning the current imbalance ratio in the stream.

The number of examples from each class in the given time moment in the
stream is continuously updated and used to calculate A as a function of the
current imbalanced ratios. The value in the nominator of A depends on whether
a classifier should over- or under-sampled for a currently considered concept
present in the stream. In OOB the value of X is equal to the cardinality of the
current biggest class size divided by the class size of the currently processed
example. It increases the number of minority class examples (as A > 1) and does
not change the number of majority ones A = 1. In the UOB the value of A is
computed as the ratio of the current size of the smallest class in the stream and
the class size of the current example. Practically, it (A < 1) reduces the number
of majority examples sent to component classifiers.

To sum up, the both re-sampling generalizations modify sending an incoming
example from a specific class for updating component classifiers in online bagging
with respect to the imbalance ratio between classes in the stream.

In our current proposal, we modify the A coefficient by incorporating infor-
mation about the difficulty of the incoming example. Previously [5] in order to
estimate the difficulty of the example in the static data, the local analysis of
class labels of its k£ nearest neighbours was exploited. Following this inspiration
we propose to define unsafeness level of a minority class example x as

! '4
1, = et )

k
where ,’,mj is the number of examples belonging to the majority class among k
nearest neighbours of x which are calculated on a sliding window in the stream,
k is the number of nearest neighbours taken for the analysis, ¥ is a parameter
respousible for additional amplification of the impact of unsafe examples (i.e.
value ¥ > 1 amplifies the role of rare cases and outliers). In the Neighbourhood
Oversampling Online Bagging (NOOB) this coeflicient is aggregated with the
class sizes coefficient to increase the number of unsafe minority examples send
to update the component classifiers, which is defined as follows:

A= (Nmaj/Nmin) ) (L127un + 1)7 (2)

where Ny,q; denotes the number of examples from the majority class contained
in the sliding window, N,,;, denotes the number of examples from the minority
class.
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In (NOOB) it increases the Poisson distribution estimate of the number of
minority examples while for the incoming majority examples A = 1 (as in the
standard online bagging). The general pseudocode of the Neighbourhood Over-
sampling Online Bagging is presented in Algorithm

Algorithm 1 Neighbourhood Oversampling Online Bagging (NOOB)

Input: S: stream of examples

n: number of classifiers in ensemble

W: window of examples

k: number of nearest neighbours

¥: additional coefficient for calculating safe level
Output: &: an ensemble of classifiers

1: for all examples z € S do
’ w
2 calculate safe level of incoming example L2,;, = (N"”,:j)
3 if € minority class then
4 )\ — (Nmaj/Nmin) : (Lg‘rnn + 1)
5: else
6: A1
7 end if
8: for all classifiers C; € £ do > C; - single classifier of ensemble
9: set | ~ Poisson(\)
10: update C; using x, | times

11: end for

12: W+ W U {z}

13: if necessary remove outdated examples from W
14: end for

In similar way, we propose the Neighbourhood Undersampling Online Bagging
(NUOB), where for the incoming majority examples we define a safeness level
as

Nma'
L} =—% (3)

maj k ’

and as its consequence a new coefficient for the majority example

A= (Nmin/Nmaj) ) (Lfnaj)wv (4)
which reduces the chance of using unsafe majority examples to update compo-
nent classifiers and having A = 1 for incoming minority examples it leads to such
undersampling which removes rare cases, outliers and partly borderline majority
examples. Due to the page limits of this paper, we moved its pseudocode to the
electronic appendixEI

! Pseudo-codes of NUOB and Hybrid ensembles are available in an online appendix
http://www.cs.put.poznan.pl/jstefanowski/pub /imbstreams.pdf
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Finally, as observed in experiments sometimes NUOB is better than NOOB
and sometimes, on the contrary, NOOB is better than NUOB, so we decided to
propose their hybrid version.

In Hybrid Neighbourhood Online Bagging (HNOB), both ensembles NUOB
and NOOB are trained in parallel for each incoming example and their classifica-
tion performance is continuously assessed using an evaluation metric suitable for
class imbalanced data (in our experiment G-mean of both classes). The ensem-
ble that had a better evaluation measure value in the last evaluation is selected
to make class prediction for the current example in the stream.

4 Experiments

The aim of the experiment is to evaluate the usefulness of the proposed Neigh-
bourhood Online Bagging ensembles and their reaction to considered data dif-
ficulty factors and drifts, in particular concerning borderline and rare minority
examples. This is why we compare the 6 following classifiers: basic online bag-
ging, undersampling online bagging, oversampling online bagging, neighbourhood
undersampling online bagging, neighbourhood oversampling online bagging, and
hybrid neighbourhood online bagging.

We apply the same set of hyperparameters as in [3] (as it was already tuning
for considered synthetic data streams). So, all bagging ensembles contain 15
component Hoeffdings’ trees (with their standard parameters). UOB and OOB
use the forgetting degree (0 = 0.9). For all neighbourhood variants, we compute
the (un)safeness levels with & = 5 neighbours over the last sliding window W
of size equal to 500 examples. These values were found by a grid search (k =
5, 7,9 and W = 500 till 2000) in preliminary a experiment. Similarly, we tune
the exponent degree ¥ to 2.0, which means that we pay more attention to rare
examples than to safe ones.

We carried out the experiments in a controlled framework based on synthetic
generated data streams, where each data factor can be modeled and parametrized
according to different planned scenarios. We use a generator designed and used
for the earlier related experiments from [3]. Our experiments cover the following
difficulty factors and drifts:

— Imbalanced ratios — into two scenarios of either static data or with a single
drift with changing the imbalances ratio from 1% to fully balanced classes.

— Types of minority examples being either borderline (class overlap) or rare
ones (other examples in the minority classes are generated to be safe ones),
i.e. with the given percentages of their occurrence in each class: 20%, 40%,
60%, 80%, and 100%.

— Changes in class composition, i.e. local drifts of the split of each minority
class into 3, 5 and 7 sub-clusters; or merging them and moving these numbers
of sub-clusters.

Besides modeling the single factor in the given stream, we considered their pairs
and occurrences of multiple factors, which previously [3] were identified as the
most demanding.
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Due to the high number of experiments and the limited number of pages, we
only include the most important, representative results and use summaries of
many comparative experiments using the non-parametric Friedman testsE|

Firstly, we examined the impact of single factors. As expected the static
global imbalanced ratio or the drift of this ratio was well coped by all compared
versions of the online bagging ensemble, except the standard online bagging
for the stronger imbalance ratios of 1% and 2%. Let’s recall that both OOB
and UOB worked well for such scenarios in [3[10]. Moreover, our neighbourhood
proposals are also not exploiting their additional mechanisms if the data streams
do not contain other difficulty factors, so may work similarly to OOB or UOB
(what was observed in our results).

More interesting was studying the impact of the minority class decomposi-
tion. For the minority class split into smaller sub-concepts NUOB was the best
classifier with respect to Recall, while NOOB worked better than other com-
pared classifiers (also for moving sub-concept) but with respect to G-mean (the
right-hand plot of Figure .

However, the most important experiments included data streams with differ-
ent proportions of borderline and rare examples or their drifts. For both static
and drift cases we noticed better performance of the new proposed neighbour-
hood baggings in comparison to earlier UOB and OOB ones. In general, NOOB
was the best classifier for the higher proportions of rare minority examples, while
NUOB worked better for borderline examples. Exemplary reactions to such drifts
are shown in Figure [2|
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Fig. 2. Plots showing bagging variants reacting to two kinds of drift 80% rare minority
examples and G-mean measure (the left-hand figure) and minority class split into 5
sub-concepts and Recall measure (the right-hand figure)

2 Additional results are provided in the online appendix to this paper, which is avail-
able at http://www.cs.put.poznan.pl/jstefanowski/pub /imbstreams.pdf
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In Table [I] we summarize the results of Friedman tests carried out over ag-
gregated results for single elements (static factors and drifts) for considered
sub-categories concerning Recall measure. One can easily notice that nearly for
all categories the proposed NUOB is either the best classifier or one of the best
classifiers. In particular, for rare cases or borderline it is superior to the other
classifiers. On the other hand, for G-mean measure performance NOOB is better
(which indicates achieving a better balance of recognizing correctly both minor-
ity and majority classes) - in particular for different proportions of rare examples
NOOB followed by OOB are the best classifiers (averaged ranks in the Friedman
test are 1.9 and 2.1 respectively, while NUOB and UOB have 4.0 and 4.2 — for
the critical difference CD = 2.01 — it is a significant dominance of NOOB.

Table 1. Average ranks in the Friedman test for different single factors in streams (the
smaller, the better) — where classifiers evaluated by Recall metric

Data factor OB UOB OOB NUOB NOOB CD
Static imbalance 4.35 2.41 3.35 1.00 3.88 1.51
Class ratio changes 4.88 2.17 3.59 1.00 3.36 0.77
Sub-cluster merge 2.67 3.67 2.67 1.00 5.00 2.68
Sub-cluster move 3.17 3.17 2.67 1.00 5.00 2.68
Sub-cluster split 2.50 2.50 4.00 1.00 5.00 2.68
Borderline examples 2.70 3.80 2.50 1.00 5.00 2.01
Rare examples 3.90 3.80 2.80 2.10 2.40 2.01

Similar good performance of both proposed NUOB and NOOB classifiers
was noticed for data streams with pairs of factors, in particular, if one of them
was the presence of rare minority examples. An illustration of good reaction of
NUOB to such drifts is presented in Figure [3| (the right-hand plot).

The usefulness of the new proposals is even more visible for the most difficult
scenarios of generating complex data streams involving at least three factors
occurring simultaneously. An example of such a reaction is shown in Figure [3]
(the left-hand plot) for StaticIm10+Im1+Rare80+Split5 combined factors. The
global performance for different scenarios of such multiple factors is presented
in Table 21

Finally, the efficacy of Hybrid Neighbourhood Online Bagging was exam-
ined. The results showed its advantage over the best online bagging ensem-
bles, in particular NUOB. Its good effectiveness was noticeable, especially for
very complex scenarios involving many factors in the streams. An exam-
ple of such a reaction is shown in Figure [4 for StaticIm10+Iml1+Rare80 and
Split5+1Im1+ Borderline40+Rare40 combined factors.
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Fig. 3. Plots showing G-mean measure of bagging variants reacting to two kinds of
drift 80% rare minority examples and Split 5 and imbalanced ratio changing from 10%
to 1% (the left-hand figure) and imbalance ratio 10% and 80% borderline minority
ezamples (the right-hand figure)

Table 2. Average ranks in Friedman test for multiple factors scenarios vs. all examined
factors

Factors Metric OB UOB OOB NUOB NOOB CD
Multiple G-mean 4.60 2.69 3.27 2.30 2.14 0.43
All 4.39 2.56 2.99 2.58 2.48 0.31
Multiple Recall 4.67 2.61 3.76 1.79 2.17 0.43
All 4.58 2.60 3.62 1.53 2.67 0.31

Furthermore, we summarize in Table [3] the results of the Friedman test for
multiple vs. all studied factors in synthetic data streams. As one can notice Hy-
brid Neighbourhood Online Bagging is the best-performing classifier. For the
G-mean measure and multiple factors, its performance clearly outperformed all
compared variants of bagging (the post hoc analysis and critical difference sup-
port for it). For the Recall measure, it is also the winner however due to the
post-hoc analysis (CD = 0.43) its advantage over both NUOB and NOOB (also
new proposed ensembles) is not so significant.

This trend was also observed in the Recall measure when analyzing streams
with pairs of difficulty factors (see Table [4). The proposed hybrid algorithm is
the best in all of the analyzed scenarios but its superiority over other ensembles
is not so significant, as confirmed by the post-hoc analysis.
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Fig. 4. Plots  of G-mean  measures for  complex data  streams

Split5+Im1+Borderline 0+ Rare40 (the left-hand figure) and StaticIm10+Im1+Rare80
(the right-hand figure)

Table 3. Average ranks in the Friedman test for comparison of Hybrid Neighbourhood
Online Bagging vs. other online bagging variants

Factors Metric HNOB UOB OOB NUOB NOOB CD
Multiple G-mean 1.87 3.31 4.16 2.86 2.80 0.43
All 2.09 3.02 3.76 3.03 3.10 0.31
Multiple Recall 2.25 3.15 4.63 2.32 2.66 0.43
All 2.41 3.04 4.42 1.89 3.23 0.31

5 Discussion and Final Remarks

As the empirical studies have shown that previously known streaming online
classifiers cannot cope well with imbalanced data streams affected by difficulty
factors such as the presence or drift of unsafe minority types of examples (includ-
ing borderline or rare examples), in this paper we have introduced specialized
extensions of resampling online bagging, namely Neighbourhood Undersampling
or Oversampling Online Bagging ensembles. The main element of their design is
to use the safety assessment of the currently processed example based on the dis-
tribution of labels of the other examples in its local neighbourhood. This leads
us to an appropriate modification of the degree of transfer of these processed
examples to component classifiers in accordance with the Poisson distribution
parameter. Depending on tuning an additional exponent ¥ parameter it is pos-
sible to more or less focus on the most difficult examples.

The results of experiments conducted on many synthetic data streams, mod-
eling various difficulty factors or drifts, showed that both introduced online bag-
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Table 4. Average ranks in the Friedman test for different pairs of factors in streams —
where classifiers evaluated by Recall metric

Pairs of factors HNOB UOB OOB NUOB NOOB CD
Imbalance+Move 2.50 2.50 4.83 1.58 3.58 1.82
Imbalance+Merge 2.42 2.32 4.83 1.67 3.75 1.82
Imbalance+Split 2.39 2.56 4.83 1.56 3.67 1.47
Imbalance+Borderl. 2.20 3.10 4.88 1.75 3.08 0.97
Imbalance+Rare 1.95 3.58 4.83 2.90 1.75 0.97
Split+Borderline 2.46 3.00 4.48 2.04 3.02 0.87
Split-+Rare 2.14 3.28 4.56 2.76 2.26 0.87

ging generalizations are quite effective. In particular, in line with the hypotheses
made during their construction, they were most effective for scenarios with drifts
in the types of examples that previous online re-sampling bagging could not cope
with. Neighbourhood Undersampling Online Bagging is the best classifier for
dealing with the presence of borderline examples - which could be explained by
their internal mechanism of reducing the probability of learning from the most
difficult examples and performing "cleaning" of the borderline region between
classes. On the other hand, Neighbourhood Oversampling Online Bagging was
sometimes better for dealing with rare examples - recall here that ¥ parameter
was tuned to a higher value increasing the chance of copying many such ex-
amples. In general Neighbourhood Undersampling Online Bagging was the best
classifier in most complex scenarios including multiple difficulty factors or their
drift. However, the best choice is to use Hybrid Neighbourhood Online Bagging
which dynamically uses the currently superior model of a pair of parallel trained
online bagging ensembles.

Despite its definitely best experimental results (see e.g. Table, it opens the
way for further research on more advanced ensembles of classification models and
on stronger modifications of their structure as a result of detected drifts.
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