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Abstract. Dynamic real-world networks, encompassing both digital and
physical realms, inherently display complex spatio-temporal phenomena.
A common manifestation is the propagation of node states, where infor-
mation is disseminated through network edges via everyday human and
system interactions. Given the potential threats like virus spread and
fake news dissemination, it is critical to quickly and effectively iden-
tify propagation patterns and their harmful instances. Although various
approaches exist for classifying spatio-temporal graphs, we argue that
current methods overlook essential characteristics of propagation behav-
ior, such as the causal-effect relationships between node state transi-
tions. To address this gap, we propose a novel cross-snapshot attention
method that leverages the unique features of propagations originating
from specific nodes over time. The novelty lies in the element-wise at-
tention weight calculations across consecutive snapshots, linking changes
in propagation states to local network regions. Our method surpasses a
set of established graph neural network techniques in accuracy across
datasets designed to simulate complex real-world propagation dynamics.
We performed a series of ablation studies to confirm the positive impact
of the cross-snapshot attention module and its robustness to missing
snapshots, which shows that our method experiences smoother perfor-
mance degradation compared to the state-of-the-art.
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1 Introduction

Dynamic real-world networks are subject to complex dynamics [30], such as
human interactions, social media postings, financial transactions, or inter-node
computer communication. A specific kind of dynamics is the propagation of
node states across the network’s edges, mirroring a variety of these phenomena.
While some propagations depict typical network trends, others may represent
detrimental behaviors, such as the spread of diseases [32] or fake news [35].
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In order to effectively identify harmful propagation patterns, various graph-
based approaches exist, for instance, Graph Neural Networks (GNNs) and graph
kernel methods. Among GNNs; the attention-based approaches [24J37I2217] al-
low expressing the spatio-temporal features via representative low-dimensional
embeddings. Graph kernel methods compute distances in a metric space by re-
lying on symmetric, positive semi-definite functions, like graph diffusion models
[6] and temporal graphlet kernels [2I]. While GNNs and graph kernel methods
ascertain node similarities based on spatio-temporal features, they neglect the
causal-effect relationships between the node states, which are strongly governed
by domain-specific propagation properties [32I3TI35].

To investigate this gap, we design a cross-snapshot attention method (CSA)
that derives attention weights from successive propagation snapshots that asso-
ciate changes in the node states to particular regions in the networks. By design,
these weights inherently estimate the underlying causal-effect relationships. Un-
like existing methods, these weights are determined element-wise, offering better
scalability than conventional dot product attention operators, while sidestep-
ping traditional message passing across nodes. We synthesize datasets that mir-
ror real-world network dynamics that make the task of classifying propagation
patterns particularly challenging. We compare our model to popular traditional
GNNs such as a graph convolutional network [10] and a graph attention network
[28] (both temporally enhanced), as well as state-of-the-art dynamic GNNs, like
DySAT [24] and Roland [33]. CSA outperforms traditional approaches on all
datasets and remains competitive with state-of-the-art methods, while surpass-
ing them in particular cases.

To increase confidence in our resultsEI, we perform ablation studies and a
robustness evaluation against missing snapshots (a frequent condition in real-
world networks [I8]). While the ablation studies showcase the positive impact
of the novel attention mechanism, the robustness evaluation reveals that CSA
degrades more smoothly than alternative methods. To mitigate degradation even
further, we propose a self-supervised prompting model that recovers missing
information from snapshots. Ultimately, our contributions are two-fold: (1) a set
of synthetic datasets that emulate the complex network dynamics of real-world
propagations and (2) a novel cross-snapshot attention method that exploits the
causal-effect relationships of the propagation phenomenon.

2 Preliminaries

We consider a graph G = (V, E), where each node u € V possesses a specific
state s(u) € {0,1}. A subset of nodes A C V are identified as anchor nodes where
initially s(u) = 1, whereas for the remaining nodes s(u) = 0. A propagation is
defined as the subsequent transfer of the anchor nodes’ state via the edges FE
over a specified period, such that the state for a node in V\ A transitions from
0 to 1. When s(u) = 1 for a node wu, it is referred to as covered, while nodes of
state s(u) = 0 are considered uncovered.
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The propagations in a graph are observed at discrete intervals, modeled
through a spatio-temporal (dynamic) graph (STG), according to [19], such that
a STG is a collection of graph snapshots

G= {Gt}?:OGt = (‘/taEtaXVt;XEt)? (1>

where V; is a set of nodes at time ¢, F; is a set of edges at time ¢, Xy, is a
set of node attributes at time ¢, and Xg, is a set of edge attributes at time ¢.
Specifically, a dedicated node attribute represents the state s in each snapshot
and an additional edge attribute indicates the related propagation edge. This
definition implies causality in state propagations, i.e., causal-effect relationships
between nodes, excluding state transitions not induced by a neighboring node.

3 The State of the Art

Recently, graph neural networks enabled classification tasks by transforming the
graph features into structural preserving embeddings. Because traditional GNNs
are not tailored to dynamic networks, new embedding methods were proposed
where spatio-temporal features are used to transform changes (snapshots) into a
static graph, thus enabling the reuse of conventional GNNs [9123]. As this strat-
egy potentially compromises the sequential integrity of the snapshots, additional
modules are added by dynamic GNN approaches [22/I7)26], e.g., long short-term
memory (LSTMs) [11I7] and gated recurrent units (GRUs) [34)2]. Meanwhile,
new methods rely on self-attention strategies to capture the evolution of the
graph structure [24137] and related node and edge attributes [5], for instance, by
integrating transformers [36]. While current approaches ascertain pair-wise node
similarity scores based on pertinent attributes [I6], they neglect the particular
behavior of the propagation phenomenon, i.e., that evolutions originate from
specific nodes and their propagation is mediated by a combination of node and
edge features, and the network topology.

An alternative to GNNs are the graph kernel methods [20], which consist of
symmetric, positive semi-definite functions defined on the space of graphs and
that can be expressed as an inner product in a Hilbert space. These methods
are applied to estimate temporal dynamics on networks [6] and are shown to be
competitive with GNNs [21]. Nonetheless, we did not prioritize them as baselines
due to their limitation of fixing the set of features before training [20].

4 Data

Current spatio-temporal graph datasets [§] (e.g., Enron EI, Bitcoin-Alpha EL or
LastFM E[) do not contain the ground truth of the causal-effects that origi-

2 Shetty et al. The Enron email dataset database schema and brief statistical report
(2004)

3 Kumar et al. Edge weight prediction in weighted signed networks (2016)

4 Kumar et al. Predicting dynamic embedding trajectory in temporal interaction net-
works (2019)
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nated the nodes’ attributes changes. Hence, we carefully generated synthetic
samples, mimicking realistic characteristics of real-world propagations. The un-
derlying graph structures are generated via random graph generators including
Erdss—Rényi, Watts-Strogatz, Barabéasi-Albert, and Expander graphs.

Regarding the propagation phenomenon, we devise a sampling strategy in-
spired by the spread of pathogens within a population. On one hand, certain
diseases are more infectious, e.g., due to higher viral loads [12]. Conversely, spe-
cific populations may be more susceptible to particular diseases, e.g., because
of immune evasion mechanisms [I]. Accordingly, we model emission to repre-
sent the state dissemination as covered nodes, and absorption to constitute the
susceptibility of uncovered nodes. Finally, we establish transmission to config-
ure the likelihood that edges, combining infectious and susceptible connections,
induce further dissemination. Intuitively, a sample is produced through a four-
step process: (1) sampling anchor nodes, (2) sampling adjacent edges of covered
nodes, (3) sampling adjacent edges of uncovered nodes, and (4) determining
propagation ability for matching edges sampled in steps (2) and (3). Each step
can be parameterized through time-dependent node and edge functions to create
diverse scenarios mirroring desired real-world characteristics.

We introduce five datasets: COV-19, replicating different COVID-19 muta-
tion infection chains with variable transmissibility [3214] and incubation time
[31]; FAKE, based on social media reposting behavior [29/35], distinguishing be-
tween true and fake news; BTC-BP, representing block propagations in a Bitcoin
network with variations in edge broadcasting speed [3125]; DDoS, incorporating
nodes that go offline during information exchange; and WAV, featuring propa-
gations with peak transmission shifted over the observation time.

5 Approach

Our general idea of cross-snapshot attention (CSA) is to learn the broad concepts
and inner workings around the propagation phenomenon autonomously, to au-
tomatically locate and exploit granular differences to classify propagations more
accurately. Such a model must directly examine the changes between successive
snapshots, holding crucial information like who propagated to whom, how many
new nodes became covered, and which nodes possess covered neighbors so they
could become covered next. We incorporate an attention module that empha-
sizes nodes pertinent to such propagation dynamics across snapshots, aiming to
learn structural and temporal propagation characteristics.

This cross-snapshot attention model is inspired by [13], who developed graph
matching networks to generate representations for graph pairs, that can be used
to calculate similarity scores between graphs. However, unlike [13], we focus on
the dissimilarities between graph snapshots in order to adequately capture prop-
agation dynamics. Specifically, our cross-snapshot attention model comprises
three main components: (1) a snapshot encoder, (2) a cross-snapshot attention
layer, and (3) a set of aggregators.
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Snapshot Encoder. Initially, an encoder is deployed individually per snapshot,
mapping the node attributes to higher dimensional node embeddings via a linear
layer, where H; represents the transformed embeddings for all nodes at the time
t. Assuming a number of snapshots 7', the initial node attributes for a node n
that will be covered at time ¢ correspond to a T-dimensional vector, reflecting
the propagation state. For each entry ¢ where ¢ < ¢, the value is set to 0. Once
1 >=t, the value changes to 1, indicating the propagation at time t.

Cross-Snapshot Attention Layer. Utilizing the snapshot-specific node em-
beddings, we first compute the differences A between two consecutive snapshots.

Ay =H,—H,_y, Vte{l,2,..T -1} (2)

We formulate attention queries () and attention keys K by mapping H; and
H;_, through another linear layer and apply cross-snapshot attention as follows:

A, = Ay © (Ay_q - softmax(Q; © Ky)), Vte{1,2,...,T —1} (3)

Unlike traditional attention [27], which applies a softmax to the dot prod-
uct of the query and key vectors to derive a similarity score between pairs, we
compute the element-wise multiplication (Hadamar product) between queries
and keys. This adaptation ensures that interactions are only captured between
matching dimensions in @) and K, corresponding to the computation of attention
scores over individual features of the same node as they interact from one point in
time to the next. The dot product of attention weights and the adjacency matrix
A;_1 at the prior snapshot then yields updated attention weights for each node,
derived from the sum of interaction scores within their local neighborhood. This
way, each node accumulates the attention weights from its neighbors and gains
higher attention when its neighborhood received high attention. These context-
dependent node importance scores are multiplied with the snapshot differences
using another element-wise operation. As a result, inter-snapshot changes of
nodes are associated with neighboring nodes, weighted by attention. Intuitively,
the model is tasked to explain attribute changes in snapshots by emphasizing
specific regions in the preceding snapshot. Finally, we combine the weighted
snapshot differences A’ with the previous snapshot embeddings (represented via
@) to receive node embeddings H' for each snapshot delta, introducing non-
linearity through an additional ¢ function (ReLU).

Hé = ¢(Wconcat : (Htfl 2] A{f) + bconcat)v Vt S {17 27 1T - 1} (4)

Aggregators. Following the cross-snapshot attention, a propagation aggregator
takes the node embeddings H' for each snapshot delta and computes propagation-
level node embeddings for the complete sequence of snapshots. At present, a
lightweight mean operation is used, which may be replaced with more sophis-
ticated aggregation methods like an LSTM or GRU. On top, we employ an
aggregator to generate a lower-dimensional embedding from the propagation’s
node embeddings using gating vectors for each node, similar to [I3].
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Table 1: Mean accuracy and standard deviation for each model in the trans-
ductive setting on the proposed datasets. Highlighted values represent the best-
performing model, and "c¢" denotes the number of classes in the datasets.

Model COV-19 FAKE BTC-BP DDoS WAV
(c=4) (c=3) (c=2) (c=2) (c=2)

GCN  85.04 +£9.58 39.29 + 8.05 56.13 £ 5.80 65.11 + 10.39 82.15 + 8.06
GAT  93.99 4+ 2.09 86.59 £ 2.19 68.08 £ 3.10 81.65 £ 2.70 89.03 &+ 2.85
Roland 92.80 + 0.57 78.91 £ 1.71 64.10 £ 7.89 59.80 + 13.88 81.30 + 4.60
DySAT 93.90 + 1.14 85.17 £ 0.96 68.60 = 0.65 87.70 £+ 1.48 90.80 + 1.44
CSA  94.70 + 0.45 82.49 + 3.86 73.00 £ 2.15 83.80 £ 1.96 89.20 £ 2.05

Runtime Complexity. Given d node feature dimensions, an average number
of nodes n, and an average node degree of k across T snapshots, CSA has a the-
oretical runtime complexity of O((T' — 1)nkd), dominated by the multiplication
of the attention weights with the adjacency matrix within the CSA layer.

6 Evaluation

6.1 Transductive Tests

We evaluate our model’s performance in a transductive setting using the pro-
posed datasets, where propagation graphs in the training and test sets are sam-
pled from the same distribution. We compare our model to popular traditional
GNNs, specifically the Graph Convolutional Network (GCN) [10] and the Graph
Attention Network (GAT) [28]. As these models were designed for static graphs,
we utilized their temporal versions, which were obtained by injecting propagation
states as sparse node features equivalent to the ones used by the CSA.
Additionally, we compare our model to a subset of the state-of-the-art tem-
poral GNNs [16]. Among them, we evaluate a dynamic GNN [4] based on the
Roland framework [33], which updates node embeddings hierarchically across
snapshots. This model employs multiple GCN layers, each with subsequent up-
dates along the snapshots using an MLP. We also evaluate the DySAT [24] model,
which uses dedicated attention layers for both the structural and temporal di-
mensions of graphs. Both models are run with their default configurations as
suggested by the authors. Because these models are not inherently designed for
graph classification tasks, we post-process their outputs using mean aggregation
of the node embeddings to yield a graph-level embedding, followed by a linear
classification layer to map to the dataset classes. displays the accuracy
of the models on the different datasets. We chose accuracy instead of metrics
such as F1-Score because the classes in our synthetic datasets are balanced.

6.2 Ablation Studies

We conduct ablation studies (see [Table 2|) to account for variations in the
model configurations and architectures. CSA, Roland, and DySAT leverage only
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Table 2: Ablations showing mean accuracy and standard deviation for each model
and dataset. The best-performing values within each group are highlighted

Model COV-19 FAKE BTC-BP DDoS WAV
(c=4) (c=3) (c=2) (c=2) (c=2)

GAT 93.99 + 2.09 86.59 + 2.19 68.08 £ 3.10 81.65 + 2.70 89.03 £ 2.85
GATNE 92.95 £ 1.41 83.21 £2.17 67.60 £ 3.23 80.00 £ 2.59 87.90 + 3.24
GATnNE, 1. 84.30 £ 1.40 84.12 + 1.11 68.30 £+ 0.52 77.20 + 0.25 80.55 £ 2.35

Roland 92.80 £ 0.57 78.91 £1.71 64.10 £ 7.89 59.80 £+ 13.88 81.30 £ 4.60
Roland;;, 93.67 + 1.89 79.10 + 1.32 67.00 £ 0.50 77.50 £+ 3.97 81.00 £ 3.97

CSA 94.70 + 0.45 82.49 + 3.86 73.00 £+ 2.15 83.80 £+ 1.96 89.20 + 2.05
CSAna 89.50 £ 1.00 76.61 £ 0.86 66.50 £ 6.06 74.50 £ 10.68 89.33 £ 2.02

node features and the graph structure, ignoring propagation edge information,
whereas the GAT implementation includes these features in its message pass-
ing. Additionally, CSA focuses solely on the direct neighborhood of nodes, while
GAT performs three-hop and Roland two-hop message passing on the structure.
Therefore, we also compare a GAT model without edge information (GATNg),
a GAT model without edge information and with a single message passing layer
(GATNE, 11), and a Roland implementation with a single message passing layer
(Roland;y,). To assess the efficacy of CSA’s novel attention module, we finally
report the performance of a model without its attention mechanism (CSAn,),
which simply assigns equal weight to all node embeddings when matching snap-
shot differences.

6.3 Inductive Tests

In our proposed synthetic datasets, all samples represent complete recordings
from the onset of a propagation. However, in real-world scenarios, capturing the
entire life-cycle of a propagation is often impossible. For instance, the spread of
a virus might only be recognized after a significant number of infections. To sim-
ulate this, we delineate an experimental setup that masks propagation states of
specific snapshots within the test set samples, exemplifying an inductive setting
where training and test distributions diverge. Specifically, we mask an increasing
number of consecutive snapshots from the beginning of the propagation. Instead
of using a specific masking label, we substitute the propagation states of masked
snapshots with the last recorded one. For a masked snapshot at time t, we re-
assign the state function s(t) to s(t — 1), assuming the snapshot at time ¢ — 1
remains unmasked. illustrates the results of this masking experiment
for a selected set of datasets.

6.4 Self-Supervised Tests

As a robustness evaluation, we evaluate the performance of CSA in scenarios
where propagations cannot be accurately labeled. Take for instance, the indi-
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Fig. 1: Accuracy trajectory of the models while masking an increasing number
of snapshots within the test samples for COV-19, BTC-BP, and FAKE. The
snapshots are consecutively masked from the beginning of propagations by

substituting the propagation states with those from the last recorded snapshot.

viduals who have not been tested for a particular COVID-19 strain and, hence,
their infection chains cannot be associated with a certain virus mutation. To
counteract this potential information scarcity within propagation samples, we
formulate an informative self-supervised pretext task, enabling GNN training
without labeled data. This approach entails learning embeddings through self-
supervision, which was shown [I5] to elicit the recognition of latent patterns,
thus yielding more robust embeddings.

As part of this experiment, we propose a predictive model termed the prompt-
ing model, which accepts a list of snapshots and aims to predict the propagation
states of nodes at the next snapshot. The model incorporates an encoder-decoder
architecture. An initial CSA layer encodes the preceding propagation snapshots,
and the decoder reconstructs the resulting node embeddings using a lightweight
version of the cross-snapshot attention utilizing the graph structure in the next
snapshot. By training with a cross-entropy loss on the predicted binary propaga-
tion states, the model learns to represent propagation graphs in the embedding
space, i.e., becomes capable of capturing the propagation behavior between sub-
sequent snapshots.

The model is intentionally trained on a set of generic propagation graphs
that do not align with the downstream datasets, tasked to recognize more general
patterns among propagations, such as the causal-effect relationships. To evaluate
this approach, we conduct another masking experiment. We use the pre-trained
prompting model to fill the masked snapshots within the sample, before passing
it into another CSA model serving as a classifier. In this case, the snapshots at
the end of a propagation are masked in order to enact the task of predicting
node states based on the initial propagation prompt. The results are shown in
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Fig. 2: Comparison of CSA and a prompting-based counterpart that uses an
upstream prompting model to recover maskings. Snapshots within the test set
of COV-19, WAV, and FAKE are masked from the end of the propagations.

7 Discussion

7.1 Implications

Transductive Tests. CSA significantly outperforms the temporally-enhanced
GCN and GAT, as well as the more modern Roland. However, DySAT surpasses
CSA on FAKE and DDoS datasets, but underperforms on BTC-BP (compare
[Table 1). These results demonstrate that CSA is competitive with the state-
of-the-art solutions, while suggesting that CSA has the potential of improving
prediction accuracy in certain propagation scenarios.

Ablation Studies. The performance decrease of GAT when ignoring edge fea-
tures, shown in suggests that including such information in CSA could
further enhance its accuracy. Notably, additional message passing layers are de-
cisive for GAT performance. Conversely, removing layers improves accuracy of
Roland. With a single layer, Roland is guided to update embeddings solely based
on direct neighbors, proving more effective within the propagation context. In
contrast, it is crucial for GAT to combine embeddings from distant nodes, as
it otherwise fails to match states from remote snapshots due to operating on a
static graph. Finally, removing the novel attention mechanism within the CSA
layer leads to a significant drop in performance, underscoring the importance
of the attention in identifying meaningful temporal patterns among nodes and
snapshots.

Inductive Tests. Masking snapshots at the start of propagations results in se-
vere performance degradation across models and datasets (see . How-
ever, while GAT, Roland, and DySAT degrade similarly with the number of
masked snapshots, CSA exhibits a smoother degradation and withstands one
additional masking. This finding suggests that CSA is able to produce embed-
dings that are more resilient to missing information, which is remarkable given
that gathering continuous snapshots throughout the entire observation may be
infeasible in the propagation domain, e.g., consider non-symptomatic infections.
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Self-Supervised Tests. When recovering information from masked snapshots
using the predictive prompting model before classification, illustrates
enhanced accuracy on COV-19. Interestingly, CSA is insensitive to maskings
on FAKE, while the prompting even increases accuracy. This result potentially
positions prompting as a viable alternative to mitigate information scarcity in
propagations. It presents an interesting trade-off between the cost and feasibility
of self-supervision versus saving resources during data collection.

7.2 Threats to Validity

External validity. While we demonstrate solid performance of CSA in trans-
ductive and inducting environments, the instances evaluated might not be rep-
resentative of realistic domains. We mitigated this threat by sampling diverse
scenarios derived from each domain. However, future work is needed to evaluate
if our findings can be generalized to real-world settings. Because we evaluate
CSA with a subset set of baselines, further experiments are recommended, for
instance, with GNNs of the event-based category [9] and graph kernels [21].
Note that the architecture of CSA allows adaptation to event-based networks by
transforming the lists of complete graph snapshots into sequences of events.

Internal validity. During evaluation, we did not investigate potential biases in-
duced by hidden confounders. In future studies, we plan to examine whether the
attention mechanism learns significant patterns during training that benefit the
classification task. Additionally, further investigation is required to discern the
causal-effects behind the robustness increase when recovering snapshots. Specif-
ically, we need to determine if this robustness is due to the model accurately
predicting snapshots or if it is merely the result of additional noise in the data.

8 Conclusion and Future Work

This work presents a novel cross-snapshot method that utilizes element-wise at-
tention weights that measure the causal-effect relationships within propagations,
by associating network regions with changes in the node states. Our approach
enables the classification of propagation patterns in complex dynamic graphs.
We reproduce these patterns by synthesizing datasets that mirror real-world net-
work dynamics. Results are promising in a sense that we outperform traditional
approaches and remain competitive with two state-of-the-art methods.

In future work, we plan to investigate the robustness of the method and the
representativity of the synthetic dataset for cases where CSA underperforms.
To verify the increased robustness observed in CSA, we plan to generate more
sophisticated maskings that may produce more severe perturbations to the snap-
shots. Beyond the classification task, we aim to study the CSA application in
a broader spectrum of tasks, such as transfer learning and fine-tuning across
domains by combining real and synthetic datasets.
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