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Abstract. The Sales Comparison Approach (SCA) is one of the most
popular when it comes to real estate appraisal. Used as a reference in real
estate expertise and as one of the major types of Automatic Valuation
Models (AVM), it recently gained popularity within machine learning
methods. The performance of models able to use data represented as
sets and graphs made it possible to adapt this methodology efficiently,
yielding substantial results. SCA relies on taking past transactions (com-
parables) as references, selected according to their similarity with the
target property’s sale. In this study, we focus on the selection of these
comparables for real estate appraisal. We demonstrate that the selection
of comparables used in many state-of-the-art algorithms can be signifi-
cantly improved by learning a selection policy instead of imposing it. Our
method relies on a hybrid vector-geographical retrieval module capable
of adapting to different datasets and optimized jointly with an estimation
module. We further show that the use of carefully selected comparables
makes it possible to build models that require fewer comparables and
fewer parameters with performance close to state-of-the-art models. All
our evaluations are made on five datasets which span areas in the United
States, Brazil, and France.
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1 Introduction

Real estate appraisal is a highly requested exercise by both general public and
financial institutions alike. Market value, defined as the price that could be ob-
tained from its sale on an open market [12], is key to several operations. These
include the management of portfolios, the granting of mortgage loans, the as-
sessment of the viability of a real estate project, or the renting of a property.
Evaluating the risk of these decisions is capital, requiring appraisals to respect
standards of performance and consistency across vast areas comprising a diver-
sity of markets. Moreover, market actors require explainable models to inspire
confidence in downstream decision-making, or the ability to intuitively interpret
mistakes otherwise. Evaluating market values is an arduous task. A plethora of
factors can influence the price of a property, ranging from physical attributes
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to its geographical location or the market situation at the time of sale. Solv-
ing this high-dimensional problem is difficult for human appraisers and remains
challenging for computational methods. To this can be added the subjectivity
and personal context of historical transactions, leading to an increased potential
bias for statistical and machine learning techniques [3].

A variety of methods have been developed by experts and integrated into
AVMs and machine learning systems to solve these problems. One standard
current approach for expert appraising is through SCA, i.e. using similar and
neighboring properties whose transaction values are known as references in order
to interpolate the price of a new transaction. While traditional algorithms closely
mimic this behavior through explicitly defined functions of spatial interpolation
[11,5], more recently deep learning models have been favored due to their ability
to learn implicit spatially-complex local environments and treat sets of references
together [24,10,22].

Nonetheless, whereas these models have grown sophisticated, leveraging rep-
resentation learning practices for price regression, their selection policy remains
relatively naive. Most rely on temporal or geographical heuristics to gather refer-
ences, e.g. selecting comparables using predefined representations with k-Nearest
Neighbors (k-NN) logic [10], yet none seem to learn their selection policy.

The aim of our work is thus to propose a new approach to the selection of
comparables by learning representations based on geographic and other features
as well. As the selection of such comparables is essential for increasing the pre-
dictive quality of the models, advances in the selection of comparables is crucial
for the field of real estate appraisal.

As such, we introduce the following technical contributions:

– We propose a new comparable selection framework based on retrieval-enhanced
machine learning (REML) 3 [27]. When isolating this comparable selection
module, we demonstrate that learning to select comparables produces higher-
quality comparables compared to traditional selection methods, as evidenced
by the lower number of comparables necessary to obtain similar model per-
formance. In turn, fewer comparables allows for easier human examination
of retrieved properties and subsequent model predictions, increasing model
explainability and confidence of third-party decision-makers. Finally, sim-
ilar performance is obtained with up to 22x less parameters compared to
state-of-the-art models [24], further boosting explainability.

– We evaluate our propositions across state-of-the-art models datasets and on
a new dataset of French real estate transactions with explicit temporality.

2 Related Works

2.1 Real estate appraisal

Hedonic Appraisal techniques [8,23] (dating back to 1939) first approached the
problem directly by weighing each structural component [25] of the property as
3 https://github.com/homiwoo/retrieval-enhanced-real-estate-appraisal
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an inherently valuable asset. However, they are in truth relative to local con-
texts and thus require strong localization representation. In comparison, SCA
grounds the evaluation in a local context that provides explainability, resilience
to concept drift [20], and partly bypasses the need for strong localization rep-
resentation. Indeed, recent works focus on localization and neighborhood at-
tributes, the former being often considered as one if not the major explanatory
variable for real estate price [7]. The new wave of deep learning models has intro-
duced sophisticated learning schemes, such as implementing a fine-tuning stage
using contrastive learning specifically dedicated to universal representations [6].
Encoding is rendered rich enough such that a Multi-Layer Perceptron (MLP)
predictor can efficiently use it to predict prices.

In these works, comparables are selected primarily with manually specified
rules on the basis of geographical and raw euclidean feature distance, prevent-
ing finer-grained contextual comparable search. Our method overcomes these
limitations through an innovative learned selection of comparables.

2.2 Retrieval-enhanced machine learning

External memory can be beneficial to machine learning algorithms to enhance
their performance and ground their predictions in factual knowledge [28]. In do-
mains such as natural language processing [16,9] or vision [4,13], efficient tech-
niques have been developed to help models make informed decisions by retrieving
elements from external memory. These techniques issued from the information
retrieval (IR) literature fall under the category of retrieval-enhanced machine
learning (REML) [27]. Our approach adapts core REML ideas to complement
modern appraisal approaches for both retrieval strategies and retriever training.

Retrieval strategies Traditional retrieval relied on domain-based heuristics to
select elements from the database. They can provide an intuitive and explainable
solution. However, their design is limited by the usual constraints of rule-based
approaches. BM25 [1] for text retrieval lacks context and semantics. In the con-
text of real estate appraisal, the topical relevance provided by these approaches
takes the form of spatial relevance. Modern retrieval-enhanced machine learn-
ing relies instead on dense vector search [18] or combines both traditional and
vector-based approaches [2]. Our framework relies on this strategy and combines
both geographical and vector information to find comparables.

Retriever training With the exception of tasks where large foundation models
exist, both the retriever and the downstream model need to be trained. They can
be trained jointly [15], or they can be trained in distinct stages [19]. Training a
retriever separately requires a dedicated training set, and some works argue in fa-
vor of using feedback from the downstream model. For instance, attention scores
from the downstream model can be used to teach the retriever by distillation of
attention [15]. Attention scores can even be self-sufficient, allowing retriever and
downstream models to fuse [26]. We take inspiration from this last approach in
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order to train a single model end-to-end in a single stage by optimizing a single
objective function.

3 Method

3.1 Overview

We propose a Retrieval-Enhanced Appraisal module called (REA) able to se-
lect comparables by learning their representation. We use this module in an
extended model (EREA) that can reach performance close to state-of-the-art
while retaining high explainability. EREA and REA are described in Figure 1.

Training alternates between comparable selection by retrievers, their ex-
ploitation to predict a market value by a downstream model and the update
of these two modules. We are using two retrieval mechanisms, one based on
geographical proximity (geographic retrieval) and the other on vector similar-
ity (vector retrieval). The downstream model encodes selected comparables and
exploit their representation to provide a market value estimation. This vector
representation is updated using gradient descent and fed back to the retriever,
thus completing the loop.

3.2 Problem definition

The objective of our model is to predict a single scalar that best estimates the
market value [12] of a property at a given time. To achieve this, the mean squared
error of the predicted value v is minimized on the training set S. The predicted
value is taken as the natural logarithm of the transaction price (and normalized
for EREA), or the transaction price per square meter for the IV dataset (since
the surface is available, see 4.1).

We adopt the formulation of REML systems to solve this problem: a system
composed of two main parts i.e. the retriever model and the prediction model, or
downstream model. Therefore, we will seek to minimize the following empirical
risk:

L =
1

|S|
Σt∈S(fθ(Ft;Rω1 , ..., RωN

)− vt)
2 (1)

The model fθ parameterized by θ is called the downstream model and Rωi

denotes the ith retriever parameterized by ωi [27]. Ft represents the features of
the target property t.

3.3 Model architecture

Retrieval Our system uses two different top-k retrievers: a geographic retriever
R1 which selects k1 comparables exclusively using the haversine distance formula,
and a vector retriever R2 which selects k2 comparables based on embedding dot
product similarity among the N geographically closest comparables (Fig. 1).
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Fig. 1. Model architecture. Red rows represent the target property whose price is
estimated; blue rows represent comparables picked via vector retrieval; yellow rows
represent comparables picked via geographic retrieval; bi-color rows represent features
relative to the target; grey shaded rectangles and dashed lines are the modules added
to REA to form EREA.

The latter acts like a re-ranking mechanism over geographical proximity. For
each comparable, we retrieve its features Fi, its transaction value vi, and its
relative features towards the target (e.g. geographic distance) Ri.

Bi-encoder We use a bi-encoder, known to increase robustness [14], processing
both the query (our property target) and comparables. It consists of a simple
MLP using the SELU [17] activation function.

Zi = BiEncoder(Fi) (2)

This encoding is common to both retrieval and appraisal prediction.

Attention block We compute a dot product between the target and a compa-
rable encoding to generate a raw attention score.

αi = Zi.Zt (3)

Note that comparable features do not include the values directly since we do
not have access to the target’s value and have to keep dimensions symmetrical.
They do not include anything relative to the target either in order to remain
usable for retrieval, a setting that requires target agnostic information.

However, these missing features can be included using a gating mechanism
on the raw attention score itself. That way, every feature can play a role in
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the attention without hampering retrieval. Furthermore, it allows differentiation
between retrieval selection and model attention scores. Gates are not necessary
to the core retrieval framework and thus not included in REA, instead using
βi = αi (4).

We normalize attention scores across all comparables Ct posterior to this
operation to guarantee a sum equal to 1 using the softmax operator (5).

βi = αi × gate(Ft ⊕ Fi ⊕Ri ⊕ vi) (4)
γi =

eβi

Σj∈Ct
eβj

(5)

The attention module is completed by a weighted sum over values. This is
enough to perform an estimation with the minimal version of our framework
(REA). We compute the weighted sum of features too for the extended version
of the model.

v̂t =
∑
i∈Ct

γivi (6) Aggt =
∑
i∈Ct

γi(Fi ⊕Ri ⊕ vi) (7)

We chose to use a single encoder and attention layer by mixing comparables
from both retrievers after empirically testing them separated [26] or mixed.

Using both types of comparables creates competition dynamics through the
attention’s softmax, thus enticing vectors to be competitive with the geographi-
cal heuristic. It also helps bring much needed stability to the model, guaranteeing
half of the comparables are fixed across all epochs c.f. Convergence and model
stability.

Adjustment Even though the REA module can predict a value using only
weighted average, the extended model can benefit from further refinement. We
chose to predict a scalar multiplicative factor in order to adjust the raw weighted
value by a factor between [−100%,+100%]. This factor is the result of a decoder
MLP followed by a hyperbolic tangent function.

Adjt = tanh(Decoder(Aggt⊕Ft)) (8) v̂∗t = (1 +Adjt)× v̂t (9)

The hyperbolic tangent also acts as a security mechanism over the capacity
of the model by containing prices into a given range around the aggregated
comparable values v̂t.

Training procedure The training procedure alternates between training epochs
and retriever index updates. At the beginning of every new epoch, the entire in-
dex is updated with new embeddings generated using the latest model weights.
A new sampling is then performed, associating to each target t a new set of
comparables Ct.
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Convergence and model stability Although the training loop makes it pos-
sible to learn the retriever and downstream model jointly, it may also cause in-
stability. The retrieval index is updated every new epoch using the latest model’s
embeddings. Therefore, the set of drawn comparables differs from one epoch to
the other. It causes the model to try and adapt to a slightly new configuration
every new epoch. These intra-epoch learning regimes may prevent the model
from converging.

To provide the model stability, we use a decay factor on the learning rate of
the encoder module. This way, the first epochs are used to learn a good sampling
policy, while the latest are used to refine other modules. For the same reason,
we also evaluate our models using the previous to last embeddings.

4 Results

4.1 Dataset

We are evaluating our model on five datasets. Four of these datasets are com-
monly used in attention-based models for real estate valuation benchmarking
[24], spanning King County (KC) and Fayette County (FC) in the USA, as well
as São Paulo (SP) and Porto Alegre (POA) in Brazil. We introduce a new dataset
in this article spanning the Ille-et-Vilaine (IV) department in Brittany, France.
Dataset statistics can be found in Table 1.

Table 1. Dataset statistics. Values and distances are calculated w.r.t the 40 geograph-
ically closest comparables.

Region Attr. Samples Value (e/m2, $, R$) Dist. (m)
IV 22 45,554 2,613 ± 1,278 353 ± 628

KC 19 21,608 540,098 ± 367,156 604 ± 940

FC 12 83,067 155,288 ± 76,420 98 ± 148

POA 8 15,368 443,798 ± 228,518 202 ± 268

SP 8 68,848 741,952 ± 411,643 202 ± 246

Ille-et-Vilaine Ille-et-Vilaine is a diverse area with one main city, Rennes, a
coastal hub, Saint-Malo, and relatively sparse countryside. The dataset is ex-
tracted from french open data, and comprises transactions including their price,
date, location and main structural information such as surface, property type,
and room count. It also comes with point of interests counts extracted from
OpenStreetMap (OSM) and distances to key anchors like job attraction poles
and coastlines. The dataset spans 4 and a half years of data, from January 2016
to June 2023, i.e. a much longer span than other datasets used in this study.

Temporal retrieval When transaction dates are available (for the IV dataset
only), we split the dataset chronologically (Fig. 2) to prevent data leakage, and
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guarantee that during testing, comparables from a posterior date cannot be
drawn to help predict the price of a past transaction. Real use-cases cannot
perform retrieval in the future, thus evaluation should reflect this limitation. An
offset of 3 year is left outside of training to guarantee that even early transactions
from the training set will find relevant comparables among past transactions.

Fig. 2. The temporal split of the IV dataset into offset, train, validation, test.

4.2 Experimental Setup

REA and its extension EREA have been developed using Python 3.11 and Py-
Torch 2.3 as the backend. The ASI model was used directly from the original
article’s GitHub repo [24] for state-of-the-art datasets, and adapted into PyTorch
for the IV dataset.

Framework Hyperparameters In the following experiments, we configure
REA and EREA to retrieve 2k1 comparables in total, either entirely with geo-
graphic retrieval, entirely with vector retrieval, or half and half. The vector com-
parables are taken from the closest N = 3k1 + 25 geographic comparables. This
affine function was chosen as the intercept constant avoids vector search being
limited to single-digit closest comparables at low k1, while the small multiplica-
tive factor avoids vector search being swarmed by too many far and potentially
irrelevant comparables at high k1.

The Adam optimizer is used with a learning rate of 10−3 during training,
although the decay factor of 0.98 reduces the bi-encoder rate every epochs. The
model is trained over 50 epochs with a batch size of 64. We use a standard scaler
for input features of our model.

REA hyper-parameters for Table 2 are chosen per dataset from the retrieval
method and number of comparables resulting in the best average validation
MdAE in Fig. 3, whereas EREA hyper-parameters have been instead manually
optimized solely for performance.

Metrics We will consider both extrinsic and intrinsic evaluation [27], that is
evaluation of the final estimation and of the quality of retrieved comparables
themselves respectively.

We use different metrics for comparison. We adopted median absolute error
(MdAE) as a standard for regression evaluation. A traditionally used metric is
median absolute percentage error (MdAPE), which we replace by the median
absolute balanced relative error (MdABRE) [21] benefiting from symmetry be-
tween over- and under-predictions.
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ABRE(x, y) =
|x− y|

min(x, y)
(10)

4.3 Intrinsic retrieval evaluation

In Figure 3, we show the model performance when varying the number of re-
trieved comparables using (i) the usual geographic heuristic, (ii) our approach
and (iii) a combination of the two. Our REA model significantly outperforms
geographic retrieval at lower number of comparables on 4 out of 5 datasets. This
demonstrates that vector search retrieves higher-quality comparables compared
to geographic retrieval, the low number of high-quality comparables allowing for
easier interpretation of results.

Fig. 3. Intrinsic retrieval evaluation with REA. Geographic retrieval (yellow),
hybrid retrieval (green), and vector retrieval (blue), are compared with different number
of comparables. The average and 95% CI of 20 simulations are shown here.

Since both retrieval methods are synergistic, we could have expected hybrid
search to yield better performance, yet this observation isn’t systematic across
different number of comparables. Nonetheless, hybrid search outperforms vector
search performance when a large number of comparables are selected, possibly
by stabilizing selected comparables during training.

Whereas the vector retrieval selects higher-quality comparables on 4 datasets,
the tendency is completely reversed for the POA dataset, an increasing number
of comparables worsening performance. This is due to the high amount of re-
dundancy in the dataset, where 30.5% of properties share the exact same price
(absolute difference < 1R$) as the closest comparable. In comparison, this per-
centage is lower in other datasets: 12.74% for SP, 1% for KC and 5.76% for FC
(< 1$), and 1.08% for IV (< 1e).

4.4 Baselines

We will be evaluating the performance of our model against traditional machine
learning baselines [24] (Linear Regression (LR), XGBoost (XGB)), a locality-
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based baseline (k-Nearest Neighbor (KNN)), and the state-of-the-art (Attention-
Based Spatial Interpolation (ASI)).

Table 2 shows that ASI outperforms on KC, FC and SP datasets, and EREA
outperforms on IV and POA datasets. More generally, EREA shows relatively
similar performance to ASI for only a fraction of the parameters, as much as
∼ 22x when comparing the 17,140 parameters of EREA and 792 parameters of
ASI on the FC dataset (Table 3). This reduced number of parameters shows the
advantage of high-quality comparable retrieval, the model simplicity moreover
allowing for more easily explainable model decisions.

Table 2. Baseline comparison table on all 5 datasets. MdAE is in e/m2 for IV, $
for KC/FC and R$ for POA/SP, MdABRE is in %. The average and 95% CI of 20
simulations are shown here for the last 3 models. ASI was adapted into PyTorch for
the IV dataset and might differ slightly, hence the asterisk.

Model IV KC FC POA SP
MdAE MdABRE MdAE MdABRE MdAE MdABRE MdAE MdABRE MdAE MdABRE

LR 574 21.21 68568 16.96 20259 16.66 82831 25.57 136263 25.70
kNN 467 19.24 68112 16.83 12255 9.55 40000 11.18 108381 19.73
XGB 408 16.08 39485 9.26 9990 7.72 44548 12.41 69212 11.93

ASI 357.16* 13.24* 36559.8 8.37 8608.5 6.55 34281.1 9.57 58194.7 10.0
± 2.75 ± 0.09 ± 224.3 ± 0.05 ± 40.4 ± 0.03 ± 408.2 ± 0.1 ± 1496.1 ± 0.24

REA 381.0 14.21 38571.1 8.90 8864.1 6.81 39216.1 10.71 64988.5 11.16
± 1.4 ± 0.07 ± 220.5 ± 0.05 ± 25.4 ± 0.02 ± 277.9 ± 0.06 ± 219.8 ± 0.04

EREA 354.26 13.13 38253.85 8.80 8736.29 6.72 33056.22 8.91 58182.85 10.12
± 2.43 ± 0.10 ± 259.65 ± 0.06 ± 35.61 ± 0.03 ± 511.67 ± 0.14 ± 361.75 ± 0.08

Table 3. Number of parameters per model and dataset.

Model IV KC FC POA SP
ASI 11,660 21,700 17,140 19,240 3,565
REA 900 800 660 580 580
EREA 1,472 1,142 792 592 592

5 Conclusion

Real estate appraisal following the comparable estimation methodology can be
approached through the prism of Information Retrieval. In this paper, we adapt
REML techniques that found recent success to the field of real estate valua-
tion. In particular, we proposed a hybrid retrieval system that improves upon
traditional techniques of heuristic-based comparable selection.

In our study, we demonstrated that learning the retrieval policy can find
better comparables than traditional methods based on geographical distance.
Furthermore, based on this efficient selection of comparables, we have shown
that we can build a model with considerably less parameters compared to ex-
isting methods with close to equivalent performance, which results in improved
explainability and reduced computational requirements.
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By showing that the selection of comparables can be significantly improved,
this work can inspire the research community to focus on the selection of com-
parables for their research. Our future work will focus on this aspect, and with
high-quality comparables, we are convinced that it will be possible to build
models that exceed the performance of existing techniques. Finally, focusing
on few high-quality comparables could allow to enrich target and comparables
with memory-intensive features such as images for higher performance at lower
computational costs.
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