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Abstract. Forecasting models represent a paramount opportunity to
support decision-making in modern real-world applications, especially in
fields characterized by high variability due to geophysical phenomena.
In this context, major challenges are the effective combination of tem-
poral and spatial information from multiple geo-distributed nodes, and
supporting scalability for larger and growing sensor networks. Current
deep learning methods are generally unable to properly model node re-
lationships throughout the time sequences, as they either treat all nodes
independently, or exclusively focus on capturing high-level global net-
work information. Additionally, their complexity usually grows rapidly
as more nodes are added, making their applicability in large sensor net-
works costly. In this paper, we propose a novel geo-distributed forecasting
method that simultaneously deals with these two challenges. In particu-
lar, we adopt a neural architecture combining recurrent and graph neural
networks to jointly analyze sensor network time series data at two lev-
els of granularity: while the GCN sub-network analyzes global network
information, the LSTM sub-network is specific to a single node under
consideration and extracts temporal autocorrelation from its time se-
ries. The model is designed so that multiple sub-models can be trained
independently, one for each node of the sensor network, enabling high
parallelization capabilities. Quantitative experiments with real-world en-
ergy datasets show that our method is highly competitive with respect
to state-of-the-art forecasting methods.

Keywords: Time Series Forecasting · Graph Neural Networks · Sensor
Networks.

1 Introduction

Forecasting models constitute a major source of decisional support for many
modern real-world problems, such as renewable energy forecasting, where the
observed phenomenon depends on several underlying variables. Crucial open
challenges are the effective exploitation of spatio-temporal dependencies between
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multiple geo-distributed nodes, as well as the capability to process large-scale
sensor networks.

Geo-distributed data collected from several physical locations defies the con-
ventional assumption of independent and identically distributed samples, intro-
ducing spatio-temporal autocorrelation patterns that need to be exploited. Tra-
ditional autoregressive models (e.g. ARIMA, Prophet) can account for temporal
autocorrelation, but they frequently fail to evaluate multivariate data and fully
take advantage of spatial patterns [11]. Through the use of coefficients learned
exclusively for a target feature of interest, Vector Autoregression (VAR)-based
techniques may describe spatial relationships, albeit in a fairly simplistic man-
ner [16]. Additionally, they are unable to model non-linear relationships between
various values and are limited to a single target feature.

Deep learning methods based on recurrent neural networks or attention mech-
anisms, allow to deal with spatio-temporal correlations and non-linear interac-
tions among features [6,7]. The work in [6] models the spatio-temporal autocor-
relation in the sensor network by means of statistical indicators of spatial associ-
ation. Similarly, [7] leverages 3D-CNNs for traffic flow forecasting. However, such
deep learning approaches, typically based on LSTM-based architectures (e.g. Bi-
LSTM, Attention-LSTM, CNN-LSTM, SVD-LSTM) usually attribute the same
importance to all nodes and do not consider varying graph-based interactions
among nodes. To address this issue, more advanced methods adopt graph neural
network architectures, and are able to fully exploit the graph structure of the
data, and to extract additional spatial information during the temporal process-
ing [4,2,15,8].

From the scalability perspective, such sophisticated forecasting methods based
on graph convolutional neural networks [1,5,9] (GCN-LSTM) usually lead to a
higher overhead and the growth of a single model when adding new nodes to the
network, constraining these methods to the limitations of hardware resources of a
single computational worker. Some forecasting methods explicitly support large-
scale data and distributed processing and analysis [10,12,14], but their modeling
capabilities are rather shallow in the context of geo-distributed sensor networks.

In this paper, we propose a novel geo-distributed forecasting method that
simultaneously deals with these two challenges. To deal with dynamic geo-
distributed data, we adopt a neural network architecture that is able to jointly
analyze the sensor network time series at two levels of granularity. Specifically,
we use a graph convolutional sub-network to analyze, learn, and aggregate global
network information, and an LSTM sub-network that is specific to a single node
under consideration, and extracts temporal autocorrelation from its time series.
The combination of these two components is able to contextualize local node
time series with the general network state. The global information is extracted
by a sequence summarizing operator, that computes several statistics from the
input sequence of each node at run-time. These statistics are used to create
an abstract network representation, propagating node information based on the
correlation of their production output. This design allows to model the sensor
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network behaviour solely in terms of node observations, without the need of
external static information such as the geographical node locations.

To deal with scalability, our neural network model is designed so that mul-
tiple sub-models can be trained independently, one for each node of the sensor
network. As a result, the model is designed to provide high parallelization ca-
pabilities (e.g. adopting distributed learning frameworks such as Horovod [3]),
while also considering the spatial dependencies among nodes in the sensor net-
work. This trade-off is achieved using the LSTM sub-network to consider local
time series for a single node, and the GCN sub-network to consider all time
series.

Extensive quantitative experiments with real-world energy datasets show
that our method achieves a competitive performance with respect to state-of-
the-art forecasting methods.

2 Method

This section is broken down into two subsections. We start by formally defining
the issue that this study is trying to address. Following that, we outline our
suggested method in depth, focusing on the contribution of each component.

2.1 Problem Statement

In this study, we consider the scenario of N geo-distributed energy production
plants, producing observations at a regular time frequency. For each discrete
time point t, we consider all nodes together emitting an observation xt ∈ RN×F ,
for F features. In our work, the timeline is split into non-overlapping sequences
of length T , so that the k-th sequence is defined as:

Xk = [xkT+1,xkT+2, . . . ,xkT+T ] ∈ RT×N×F (1)

Let us use x̂t ∈ RN to denote the target feature value for the observation
at time point t. Given a sequence Xk and a forecasting horizon P , the forecast-
ing task consists in approximating the target feature of interest for the next P
observations [x̂kT+T+1, x̂kT+T+2, . . . , x̂kT+T+P ].

In our task, we model the interaction between the energy plants as a weighted,
fully connected graph G = ⟨V, ϵ⟩, where V = {1, . . . , N} is the set of nodes (power
plants, in this case) and ϵ : V × V → [0, 1] is a weighting function of the edges
for any pair of nodes, representing the intensity of their relationship.

Based on this formulation, data is organized into two structures:

– a sequence tensor X = [X0,X1, . . . ,XS−1] ∈ RS×T×N×F , containing S con-
tiguous, chronologically ordered sequences of length T ;

– a graph adjacency matrix A ∈ RN×N , where Av,v′ = ϵ(v, v′) is a measure of
correlation between nodes v and v′.
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2.2 Proposed Model

The proposed model is divided into two sub-networks: one acts at sequence
level and the other at timestep level. An overview of the architecture is shown
in 1. Learning representations at two different levels of granularity can offer
benefits that wouldn’t be captured at a single granularity level. The information
extracted this way is fused together, and the resulting vector is passed through
a feed-forward layer that learns to combine this heterogeneous information into
a prediction for the next P prediction timesteps. In this section, we expand on
these components and describe the model architecture in detail.

Given a node n and a timestep t, we denote with x
(n)
t the observation for

node n at time t, and with x̂
(n)
t we denote only the target feature value for that

observation.

SummarizerGlobal Timeseries

Local Timeseries

Correlation
Estimator

GCN (32) GCN (16) Flatten

LSTM (128) LSTM (32) Concat

Dropout

Linear

Predictions

ReLU ReLU

Linear

Linear

Fig. 1: Architecture of the proposed NS-GCN-LSTM model.

For every pair of nodes, the intensity of their relationship in the adjacency
matrix is computed using the correlation of their respective observations for the
target variable in the current batch of sequences.

Specifically, denoting with Xa∥Xb = (xa1, . . . ,xaQ,xb1, . . . ,xbR) the con-
catenation of sequences Xa = (xa1,xa2, . . . ,xaQ) and Xb = (xb1,xb2, . . . ,xbR),
the adjacency matrix A[s,s′] ∈ RN×N has elements

aij ≜ ρ
X̂

(i)

[s,s′]X̂
(j)

[s,s′]
,

where X̂
(v)
[s,s′] = X̂

(v)
s ∥ . . . ∥X̂(v)

s′ is the iterative concatenation of sequences span-
ning from sequence s to sequence s′, and ραβ denotes the Pearson correlation
coefficient between variables α and β.

Using the correlation between the target feature allows us to model node
relationships without the need of any external information about the network
structure, such as the geographical location of nodes, thus computing the graph
convolution solely based on the time series data. Two main advantages of this
approach are that (i) it can be easily applied to other domains where it’s not
possible to clearly define a distance function between nodes, and (ii) it is espe-
cially useful in domains where the physical distance is not necessarily the best



Node-Sensitive GCN-LSTM for Geo-Distributed Forecasting 5

measure to use, as physically close sensors are not necessarily more strongly
related (e.g. computer networks). In our work, the interval [s, s′] is set to be
equal to the current batch of B sequences, where B is the batch size. This choice
allows to have a dynamic adjacency matrix that reflects recent network condi-
tions, and at the same time avoids recomputing A for each instance, maximizing
a relevancy–computational efficiency trade-off.
Graph Convolutional Layer. To extract global network information, relevant
historical data is summarized using statistical functions. Given a node i and the
sequence of the target feature X̂

(i)
k =

(
x̂
(i)
kT+1, x̂

(i)
kT+2, . . . , x̂

(i)
kT+T

)
for i, and

denoting with X̂
′(i)
k =

(
x̂
(i)
kT+⌊T/2⌋, . . . , x̂

(i)
kT+T

)
the sub-sequence composed of

the observations in the second half of X̂(i)
k , we adopt a sequence summarizing

function

ϕ(X̂
(i)
k ) =

(
µ(X̂

(i)
k ), µ(X̂

′(i)
k ), σ(X̂

(i)
k ), σ(X̂

′(i)
k ),Skew(X̂

(i)
k ),Kurt(X̂(i)

k ), Slope(X̂(i)
k )

)
,

where µ denotes the mean, σ the standard deviation, Skew is the third standard-

ized moment: Skew
(
X̂

(i)
k

)
= E

x̂(i)∼X̂
(i)
k

[(
x̂
(i)
k −µ(X̂

(i)
k )

σ(X̂
(i)
k )

)3
]
, Kurtosis is the fourth

standardized moment: Kurt
(
X̂

(i)
k

)
= E

x̂(i)∼X̂
(i)
k

[(
x̂
(i)
k −µ(X̂

(i)
k )

σ(X̂
(i)
k )

)4
]
, and Slope is

the angular coefficient of the best fitting4 line for X̂
(i)
k . The summarization ϕ is

applied locally to each node of the sequence X̂k.
The output of the graph convolutional layer for a layer l and a sequence k is

defined as:
H(l+1) = ReLU

(
D̃−1/2AkD̃

−1/2ϕ(X̂k)W
(l)
)

5

where Ak denotes the correlation adjacency matrix as described earlier in the
section, D̃ denotes its degree matrix with D̃ii =

∑
j Ak;ij , and ϕ(X̂k) is the

summary matrix for sequence k.
Time series processing (LSTM). We employ an LSTM model alongside the
graph neural network to analyze the sequence time series features. Unlike the
GCN, which acts on the summarized values ϕ(X̂k), the LSTM works on the raw
data Xk, and on all features, in a multivariate way.

In our model, we use two LSTM networks in series. The first one is used
as a preprocessing step for the input sequence. It uses a cell state of size 128
and intermediate hidden states h1, . . . , hT are collected as output, so we have
an hidden state ht for each corresponding input time step t for the sequence,
resulting in a matrix of shape T × 128.

The second LSTM network is simpler and compresses this intermediate rep-
resentation into a condensed vector of 32 values, corresponding to its last hidden
state h′

T , without returning intermediate hidden states.
4 According to least squares minimization.
5 Self-loops are not required since Ak has diagonal equal to 1.
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Fusion. As a last step, the outputs of the GCN and LSTM sub-networks are
fused together via a concatenation layer, to obtain a unique representation com-
bining local and global network information. Finally, a 50% dropout is applied
to this vector representation6, which is then fed to a series of three feed-forward
neural networks that progressively compress it to the desired output size P , to
extract a final prediction for the desired node and forecasting horizon.

3 Experiments

3.1 Experimental Setup

The datasets used to perform experiments are reported in Table 1. PV Italy
contains hourly observations from 17 solar plants located in Italy, collected from
2:00 am to 8:00 pm. The time period spans from January 1st, 2012 to May
4th, 2014. Wind NREL was modeled using the Weather Research & Forecasting
(WRF) model. Each plant consists of ten 3 MW turbines (for a total of 30 MW).
Hourly aggregated observations range from January 1st, 2005 to December 31st,
2006. Wind NREL includes the following input features: temperature, pressure,
wind speed, wind bearing, humidity, dew point, cloud cover. PV Italy includes
all features in Wind NREL and also includes additional features for altitude,
azimuth, irradiance and a weather summary feature. PV Italy observes a cutoff
period between 9:00pm and 2:00am due to the absence of irradiance at that time.

Table 1: Datasets analyzed in our experiments.
Dataset Domain Time Horizon Nodes Features

Frame P N F

PV Italy Energy ≈2.5 years 19 17 12
Wind NREL Energy 2 years 24 5 8

3.2 Results

Table 2 presents the experimental results obtained for all methods and datasets
considered in our study. It can be observed that our proposed method out-
performs all competitors with all datasets according to the MAE and RMSE
metric. Overall, it can be observed that Wind NREL presents the highest er-
rors, which confirms that wind power forecasting is a more challenging than the
solar counterpart, even though information from multiple nodes is taken into
account. Among autoregressive approaches, Prophet significantly outperforms
6 Dropout and batch normalization are recognized as beneficial regularization tech-

niques. This rate was chosen subsequently to grid search using a validation set and
values ≤ 0.5 following recognized heuristics [13].
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ARIMA, possibly due to its improved exploitation of seasonal patterns. As ex-
pected, methods based on deep neural networks outperform the autoregressive
approaches, confirming the positive contribution of exploiting the multi-variate
nature of the data, the extraction of non-linear patterns, as well as the combined
information from multiple nodes. One surprising result is that LSTM slightly
outperforms Attention-LSTM on both datasets, and GRU outperforms all other
deep learning methods, except for our proposed model, on Wind NREL. A sim-
ilar pattern can be observed for SVD-LSTM obtaining slightly better results
compared to GCN-LSTM. This result may depend on the fact that the global
model learned by these methods is unable to uncover local spatio-temporal pat-
terns and exploit them for the forecasting task at each single node. On the
other hand, our method overcomes this issue, providing LSTM sub-models that
are locally-optimized based on GCN features that globally consider the network
structure and node relationships, but are learned separately for each node.

Table 2: Experimental results averaged over 10% evaluation sequences. The best
performing method for each dataset and metric is marked in bold.

Model
PV Italy Wind NREL

MAE RMSE MAE RMSE

ARIMA 0.176 0.268 0.345 0.409
VAR 0.121 0.152 0.238 0.279
Prophet 0.077 0.119 0.261 0.302
LSTM 0.060 0.101 0.251 0.305
GRU 0.062 0.104 0.244 0.300
Bi-LSTM 0.061 0.105 0.274 0.324
Attention-LSTM 0.063 0.109 0.270 0.325
CNN-LSTM 0.060 0.101 0.303 0.369
SVD-LSTM 0.062 0.103 0.251 0.307
GCN-LSTM 0.061 0.103 0.257 0.309
NS-GCN-LSTM (Proposed) 0.059 0.097 0.231 0.278

4 Conclusion

In this paper, we proposed a novel time series forecasting method that leverages
a neural architecture combining recurrent and graph neural networks to model
geo-distributed sensor networks at two different levels of granularity (local and
global). We showed that this characteristic allows us to learn relevant node-
specific patterns while also extracting spatial autocorrelation from neighbouring
nodes. This peculiar model architecture also allows multiple sub-models for the
different nodes to be trained independently, providing high parallelization ca-
pabilities. Quantitative experiments with real-world energy datasets highlighted
the competitiveness of our method against state-of-the-art forecasting methods.
Future work will focus on assessing the scalability of our method in the presence
of large sensor networks.
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